La composición química natural del agua subterránea es producto de la interacción entre el agua que se infiltra y los materiales por los que circula, a partir de los cuales adquiere diversas sustancias que pasan, generalmente en forma iónica, a la disolución.

Cuanto más solubles son los minerales de la litología encajante y mayor es el tiempo de contacto, más mineralizada será el agua que los atraviesa. Así, en terrenos calcaríferos frisados, karstificados o en ambientes donde la velocidad del flujo es rápida y el tiempo de contacto con la roca es breve, las aguas tienden a mantener bajas salinidades; mientras que en terrenos detríticos el agua circula más lentamente, siendo mayor el tiempo de residencia en el acuífero, por lo que se disuelve más cantidad de especies solubles. Además, las modificaciones que pueden ocurrir en el transcurso de la infiltración: procesos de oxidación-reducción, cambio de bases, mezclas de aguas de distinta composición, alteran la calidad natural, incluso en un mismo acuífero y dan lugar a situaciones de zonación con propiedades físico-químicas diferentes.

Clasificación de la Dureza del Agua

<table>
<thead>
<tr>
<th>TIPO</th>
<th>mg/l CaCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUY BLANDA</td>
<td>0 – 40</td>
</tr>
<tr>
<td>BLANDA</td>
<td>40 – 120</td>
</tr>
<tr>
<td>MEDIA</td>
<td>120 – 350</td>
</tr>
<tr>
<td>DURA</td>
<td>350 – 650</td>
</tr>
<tr>
<td>MUY DURA</td>
<td>> 650</td>
</tr>
</tbody>
</table>

Clasificación de la Mineralización del Agua

<table>
<thead>
<tr>
<th>TIPO</th>
<th>CONDUCTIVIDAD (µS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN MINERALIZACIÓN</td>
<td>< 65</td>
</tr>
<tr>
<td>DÉBIL</td>
<td>65-200</td>
</tr>
<tr>
<td>LIGERA</td>
<td>200-500</td>
</tr>
<tr>
<td>NOTABLE</td>
<td>500-2000</td>
</tr>
<tr>
<td>FUERTE</td>
<td>>2000</td>
</tr>
</tbody>
</table>

Características Químicas de las Aguas Subterráneas en Andalucía

<table>
<thead>
<tr>
<th>ÁREAS HIDROGEOLOGÍCAS</th>
<th>FACES HIDROQUÍMICAS</th>
<th>MINERALIZACIÓN</th>
<th>DUREZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bicarbonatada cálica</td>
<td>Ligera-Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>B</td>
<td>Bicarbonatada cálica</td>
<td>Ligera-Notable</td>
<td>Media</td>
</tr>
<tr>
<td>C</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Dura</td>
</tr>
<tr>
<td>D</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Ligera Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>E</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Ligera-Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>F</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>G</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Sulfatada cálica</td>
<td>Notable</td>
</tr>
<tr>
<td>H</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Sulfatada clorurada cálica</td>
<td>Notable</td>
</tr>
<tr>
<td>I</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Clorurada bicarbonatada y clorurada sulfatada cálica</td>
<td>Notable</td>
</tr>
<tr>
<td>J</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>K</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Clorurada bicarbonatada y sulfatada cálica</td>
<td>Notable</td>
</tr>
<tr>
<td>L</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>M1</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>M2</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>N1</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Clorurada bicarbonatada y sulfatada cálica</td>
<td>Notable</td>
</tr>
<tr>
<td>N2</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Clorurada bicarbonatada y sulfatada cálica</td>
<td>Dura</td>
</tr>
<tr>
<td>O</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>P</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>Q</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>R</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>S</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T1</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T2</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T3</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T4</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T5</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T6</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T7</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T8</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T9</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T10</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T11</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T12</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T13</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T14</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T15</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T16</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T17</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T18</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T19</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T20</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T21</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T22</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T23</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T24</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T25</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T26</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T27</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T28</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T29</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T30</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T31</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T32</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T33</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T34</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T35</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T36</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T37</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T38</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T39</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T40</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T41</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T42</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T43</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T44</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T45</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T46</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T47</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T48</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T49</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
<tr>
<td>T50</td>
<td>Bicarbonatada cálica y/o cálcico-magnesica</td>
<td>Notable</td>
<td>Media-Dura</td>
</tr>
</tbody>
</table>
MAPA DE CALIDAD DE LAS AGUAS SUBTERRÁNEAS EN ANDALUCÍA
Las facies hidroquímicas son una característica definitoria del tipo y predominio de las especies iónicas en la solución, y depende lógicamente de la naturaleza litológica de los materiales acuíferos. Las formaciones geológicas constituidas por rocas carbonatadas (calizas, dolomías, calcarenitas...) dan lugar a aguas bicarbonatadas calcáreas, magnésicas o ambas, mientras que en los acuíferos detríticos las variaciones en las facies pueden ser tantas como materiales sedimentarios (carbonatados, sílicicos, yeseríferos...). Las rocas ígneas, en las que habitualmente se desarrollan pequeños acuíferos de interés local, producen aguas bicarbonatadas sódicas o calcio-sódicas, generalmente de baja mineralización y escasa dureza.

La composición natural del agua puede ser alterada por las actividades humanas –urbanas, agrícolas e industriales– que afectan, generalmente de forma negativa y determinante, a la calidad, provocando en ocasiones su inhabilidad para el uso al que se destinan.

La incidencia de las prácticas agrícolas se traduce habitualmente en un incremento del contenido en especies nitrogenadas, especialmente nitratos, procedentes de los fertilizantes aplicados. Es también fácil encontrar productos fitosanitarios, aunque debido a sus particulares propiedades (poder de retención y adosación del suelo y materia orgánica, autoadsorción...), su aparición en el agua subterránea ocurre a bajas niveles de contaminación, o incluso puede ser enmascarada por otras sustancias orgánicas naturales del suelo y cultivos.

Los vertidos urbanos deficientemente tratados pueden dar lugar a situaciones de contaminación muy variadas, según la composición de las aguas residuales. Además de la posible contaminación bacteriológica, las especies mayoritarias detectables son las nitrogenadas (amoniaco, nitritos, nitratos), además de cloruros, sodio, detergentes y materia orgánica. A estos pueden sumarse otras sustancias tóxicas, provenientes de instalaciones industriales que viertan sus residuos a través de las redes de alcantarillado.

Por último, los vertidos industriales presentan una composición química muy variada, desde sales minerales, a toda una amplia gama de compuestos orgánicos, dependiendo del tipo de industria. No obstante, la aparición de metales pesados y sustancias orgánicas deben tomarse como indicio de una potencial contaminación de origen industrial.

La compleja geología de Andalucía da lugar a la existencia de una notable variabilidad en la tipología de las aguas subterráneas, a la que hay que sumar las alteraciones introducidas por el hombre en diversas regiones, que van desde la contamínación extensiva de los acuíferos por las importan explotaciones agrícolas de esta región hasta la intrusión marina en los acuíferos costeros.

A grandes rasgos, las unidades carbonatadas de la geografía andaluza, contienen las aguas de mejor calidad química natural, al ser éstas las menos salinas. Las facies en estos casos son bicarbonatadas calcáreas, magnésicas o ambas; presentan mineralizaciones ligeras a notables, con conductividades medias de 300-800 μS/cm y predominan las aguas de media (200-300 mg/l CaCO₃), aunque en algunos casos pueden ser duras. Esta tipología general de aguas corresponde a las de las líneas hidrogeológicas denominadas abreviadamente A, B, C, D, E, G, Hb, T, Y, Z.

Localmente y como consecuencia de la influencia del substrato impermeable constituido por materiales trápicos (margas y yesos), las aguas de algunos terrenos calcáreos incrementan su mineralización y dureza, cambiando incluso sus facies, que adquieren un carácter sulfatado e incluso clorurado. Así, en algunos casos llegan a superar conductividades de 2000 μS/cm y alcanzan durezas muy altas, 800-1000 mg/l CaCO₃. Este es el caso de los acuíferos de San Cristóbal, Alta Coloma, Sierra Mágina (B); Rute–Horconera (G); Sierra de Estepa (I); Cuencas de Fuente de Piedra, Alcalía de la Vega de Antequera (O); Llanos de Villamartín (T); Sierra de Grazalema (Z).

Las aguas subterráneas de las formaciones detríticas tienen características muy variables, aunque con calificación general puede señalarse su mayor mineralización frente a las procedentes de litologías calcáreas. Las facies varían de bicarbonatadas calcio-magnésicas, propias de las zonas interiores, a cloruradas sódicas en las zonas costeras, con una amplia gama de tipos intermedios y mixtos. Es frecuente encontrar en áreas interiores facies primarias sulfatadas (Alcalía del Guadalquivir, Alcalía, acuífero de Sevilla-Carmona, Miocene transgresivo de Base, acuíferos de las cuencas de los ríos Almanzora, Andarax y Aguas, Delta del Atún, Polje de Zafaraya) y cloruradas (Altiplanos de Écija, Sevilla-Carmona, acuíferos de Alcalía, Conil y Lebrija). Los acuíferos de El Río Tajo, además de otras mixtas, bicarbonatadas-sulfatadas, bicarbonatadas-cloruradas, calcio-magnésicas y cloruro-sódicas, resulta de la diversidad de materiales que constituyen los sedimentos (calcarenitas, conglomerados, arenas, gravas, limos, arcillas). La mineralización es notable, con conductividades del orden de 600-900 μS/cm, y durazos medias a duras, 300-400 mg/l CaCO₃ en los casos de aguas bicarbonatadas; estas propiedades se intensifican en las facies cloruradas, dando lugar a aguas de fuente mineralización, con conductividades superiores a 1000 μS/cm y duras a muy duras, 500-700 mg/l CaCO₃.

La presencia de sulfatos es especialmente notoria en algunos sectores de El Común Sur, donde de forma habitual se superan los 500 mg/l. Es el caso del Guadalquivir del río Vélez, Dehesa de Malaga, Cuenco de Antequera, Dehesa de Almería-Campo de Nijar, Cuencas de Almanzora-Vera y algunos puntos del Campo de Dalías.

El proceso de intrusión marina en los acuíferos costeros altera la calidad natural de sus aguas y provoca importantes aumentos de la salinidad, dando lugar a aguas muy duras y conductivas del orden de 3000-8000 μS/cm, que llegan a alcanzar 10000 μS/cm (Andalucía-Almería, Campo de Dalías, Carachuna-Castell de Ferro, Río Verde). En estos sectores del litoral, si bien alteran los caracteres intermedios entre bicarbonatados y clorurados, predominan las facies cloruradas sulfatadas. La intensidad de la intrusión salina en función del grado de afección de los acuíferos puede definirse como local, zonal y generalizada. En el primer grupo se engloban los acuíferos de Almonte-Maímesas, Rota, Puerto Real-Conil, Vejer-Barbate, Marbella-Estepona, Fuengirola, Nerja, y Albuñol; la intrusión es zonal en Ayamonte-Huelva; Vélez, Carachuna-Castell de Ferro y Campo de Dalías. De forma generalizada se encuentran afectados los sectores de Sanlúcar-Chipiona y Almuñécar.

Otro de los principales problemas que afectan a la calidad de las aguas subterráneas en Andalucía es la contaminación por nitratos. El origen de su frecuente y extendida presencia en las aguas es principalmente la aplicación de fertilizantes en el sector agrícola; además influyen también los efluentes urbanos y ganaderos, cuya deficiente eliminación y fugas en las redes de saneamiento puede ser origen de contaminación de carácter puntual o localizado, como ocurrió en el acuífero de Frailles (Sierra Sur de Jaén), Vega de Granada, Altiplanos de Écija, Depósitos aluviales de Guadizar-Hozgaranta, Polje de Zafaraya, entre otros. Las áreas afectadas por la presencia de nitratos son numerosas y se localizan en las formaciones detríticas, donde alcanzan un gran desarrollo las prácticas agrícolas: Sevilla–Carmona, aluviales del Guadalquivir y Guadalete, vega del río Genil, Almonte-Marismas, Alajar, Motril-Salobreña, Fuente de Piedra, aluviales del Guadalhorce y Guadalete, Albuñol, Vélez-Malaga, Llanos de Antequera, Bajo Aledo y Campo de Dalías. En todas ellas es frecuente la presencia de nitratos en contenidos elevados, superiores en numerosos casos a 100 mg/l, e incluso a 250 mg/l.

Casos de contaminación de origen industrial se han detectado en Fuenraza de Martos (Sierra Sur de Jaén), provocado por el vertido temporal de alquitrán. Excepcionalmente se ha encontrado plomo en el acuífero de Sevilla-Carmona, y también metales pesados en la zona baja del acuífero del Bajo Guadalhorce.