

Modelling high precision lysimeter data to quantify vapor flux and the impact of dew on groundwater recharge

<u>Claus Kohfahl</u>¹, Lidia Molano-Leno¹, Maarten Saaltink⁵, Daniel Jesús Martinez Suárez¹, Fernando Ruiz Bermudo¹, Antonio Martínez Sánchez De La Nieta¹, Gonzalo Martínez⁴, Karl Vanderlinden³, Carolina Guardiola¹, Juan Vicente Giráldez²

45th the International Association of Hydrogeologists IAH 2018 in Daejeon, Korea Sep 13, 2018

Claus Kohfahl

Instituto Geológico y Minero de España Unidad de Sevilla

Lead investigators:

- Claus Kohfahl
- Carolina Guardiola Albert

¹Research of Geological Resources, Instituto Geológico y Minero de España, Spain,

²Agronomy, Universidad de Cordoba, Spain, ³Centro Las Torres-Tomejil, Instituto de Investigación y Formación Agraria y Pesquera, Spain,

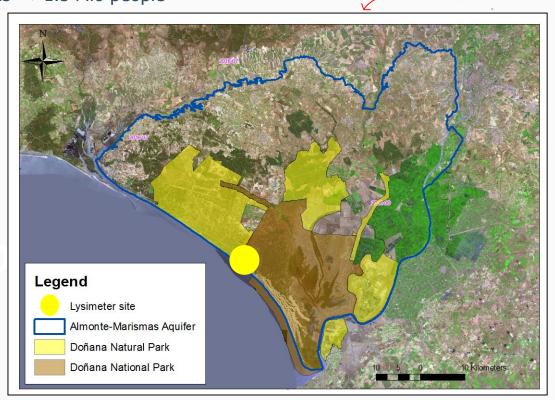
⁴Applied Physics, Universidad de Cordoba, Spain,

⁵Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya, UPC, Spain

STUDY SITE

Southwest Spain: Doñana National Park => Almonte-Marismas aquifer

Geography


- surrounded by 46 villages and towns =>1.5 Mio people
- Agriculture and Tourism

Geology

- dunes
- beaches
- marshes

Climate

- Sub-humid Mediterranean with
 Atlantic influence
- > Average rainfall: 500-600 mm
- Average Temperature: 17-18°C

Ortophoto from Junta de Andalucia webpage: http://www.ign.es/wms-inspire/pnoa-ma

MOTIVATION

Threat of groundwater resources in **Doñana**:

Intensive agricultural irrigation

Water supply for Tourism

Dune belts

Fundamental for groundwater recharge

Key location for the quantitative and qualitative monitoring of water resources in ecological habitats.

Climate Change may impact groundwater recharge due to:

- > increasing temperatures
- changing seasonal patterns of precipitation
 - > change in vegetation

MAIN OBJECTIVES

To explore the impact of different meteorological conditions on groundwater recharge in <u>dunes</u> belts within <u>semiarid climate</u>.

To derive its dependence on regional climate trends predicted by climate models.

METEO LYSIMETER

- Most precise measures for recharge, precipitation and evapotranspiration.
- Mostly installed for agricultural purpose in crop areas.
- Limited knowledge exists about recharge dynamics and its dependence on meteorological parameters in dune belts.

MATERIAL AND METHODS

Meteo Lysimeter Site Equipment

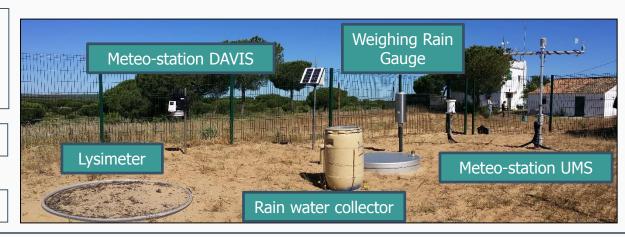
Weighting Lysimeter

(UMS AG, Munich, Germany)

- 1 m² area
- 1.5 m height
- 10 g weighting resolution

Six CS650 soil moisture sensors (Campbell Scientific, Logan UT)

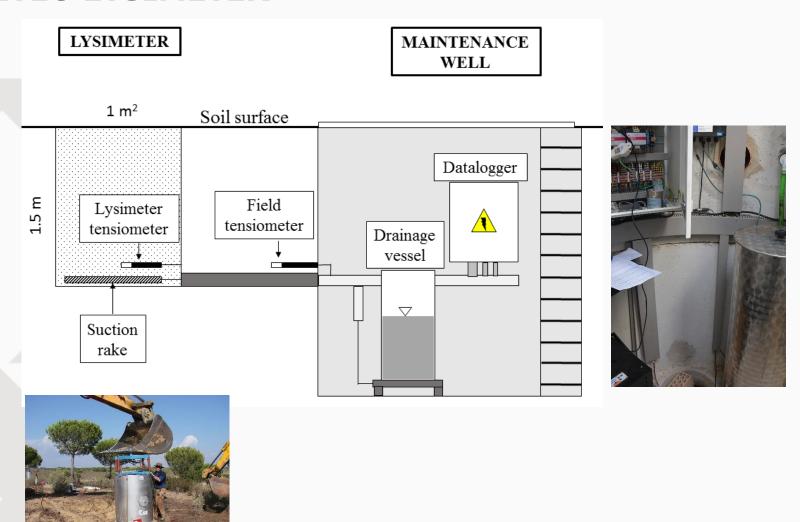
Depths (m)	
0.30	1.60
0.60	2.20
1.20	3


2 Automatic and Meteorological Stations

(Vantage PRO2 Davis, California, USA; UMS AG, Munich, Germany)

Weighing Rain Gauge (OTT pluvio1)

Rain water collector


Measured parameter	Time interval (minutes)
Soil mass lysimeter	1
Water mass drained from lysimeter	1
Soil water tension	10
Soil moisture	10
Wind direction	10
Wind velocity	10
Net radiation	10
Precipitation	10
Air humidity	10
Air and soil thermal profile	10
Soil bulk density	Once
Grain size distribution	Once
Mineralogy	Once
Metals content	Once

MATERIAL AND METHODS

METEO LYSIMETER

MATERIAL AND METHODS

Data Noise Filtration: AWAT

(Peters et al. 2014; Schrader et al. 2013)

$$P = R + ET + \Delta Soil$$
 water volume

$$\Delta W = \Delta w_{lys} + \Delta w_{drain}$$

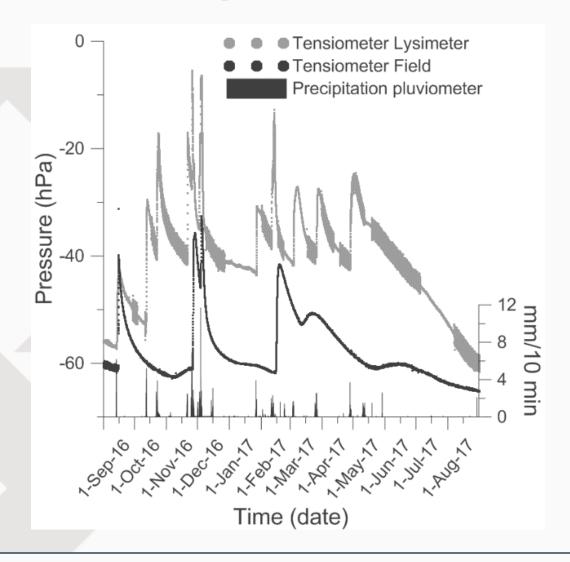
Parameter measured by lysimeter:

- Precipitation
- Evapotranspiration
- Recharge
- Δ Soil water volume = Δw_{lys}

$$P = \begin{cases} \Delta W, & \Delta W > 0 \\ 0, & \Delta W \le 0 \end{cases}$$

$$ET = \begin{cases} \Delta W, & \Delta W < \mathbf{0} \\ \mathbf{0}, & \Delta W \ge \mathbf{0} \end{cases}$$

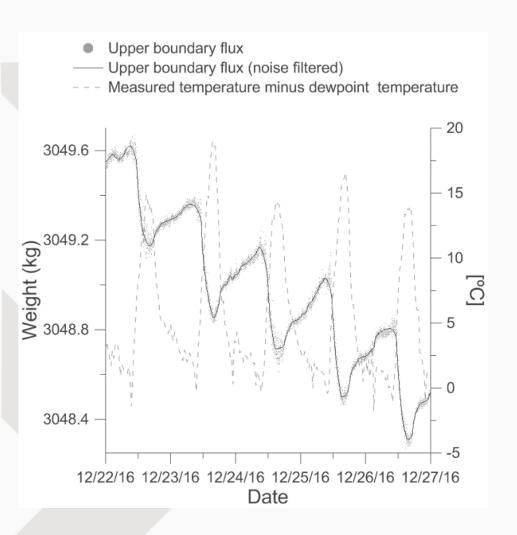
Intrinsic noise reduced by smoothing


AWAT filter

Maximum window width: 31 min Maximum threshold: 0.24 mm

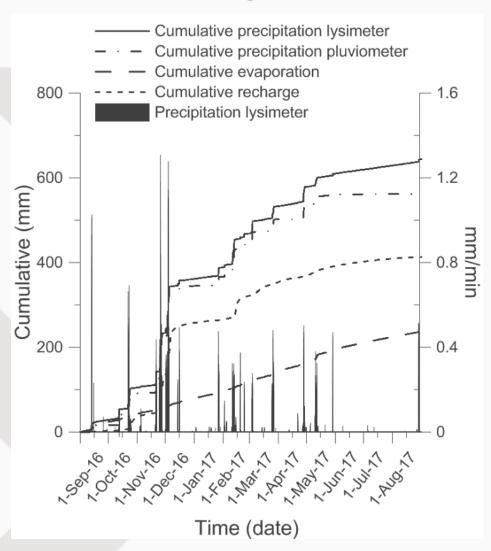
FIRST RESULTS AND DISCUSSION

Lower boundary control



FIRST RESULTS AND DISCUSSION

Dew and real evaporation


- ✓ Dew 0.3-0.5 mm/day
- ✓ Real evaporation 0.4-0.6 mm/day

FIRST RESULTS AND DISCUSSION

Soilwater budget in mm

Prec._{lysimeter} 643.821

Prec. pluviometer 566.5

Ev real 240.622

Recharge 412.8599

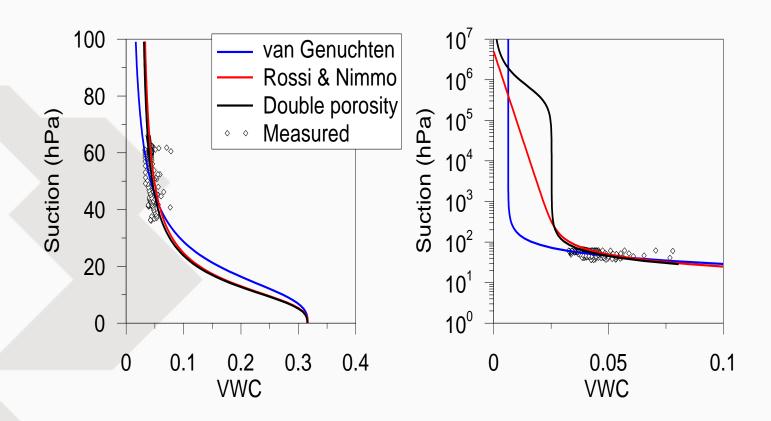
storage -9.68 kg

Dew measured 146

✓ 64% recharge

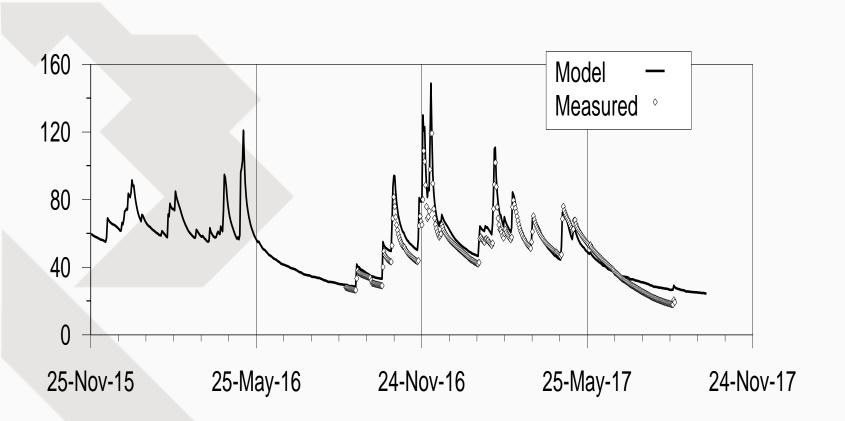
Modelling results (Maarten Saaltink et al. in prep.)

- > Software: **CODEBRIGHT** (Olivella et al., 1996) that
- Solves balance equations for water, air and energy in an unsaturated medium
- One-dimensional vertical homogeneous domain of 1.4 m length, divided into 140 elements of 0.01 m
- > Starts at November 25, 2015 and ends at October 4, 2017, which is the period with available meteorological data

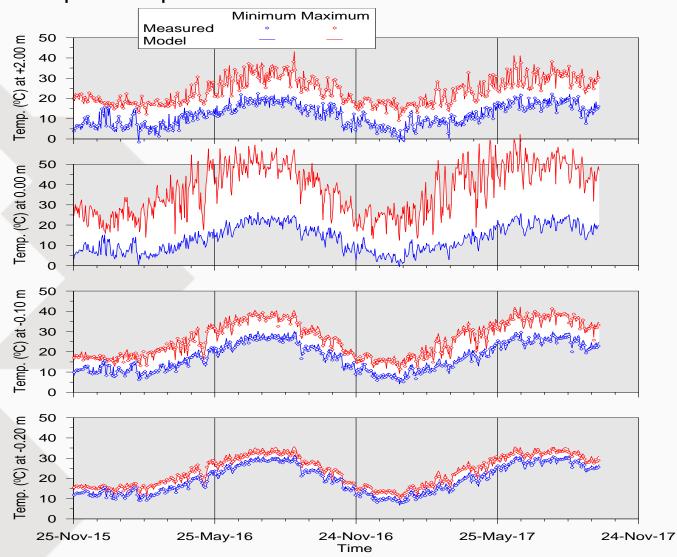

Modelling: boundary conditions

Flux of water:

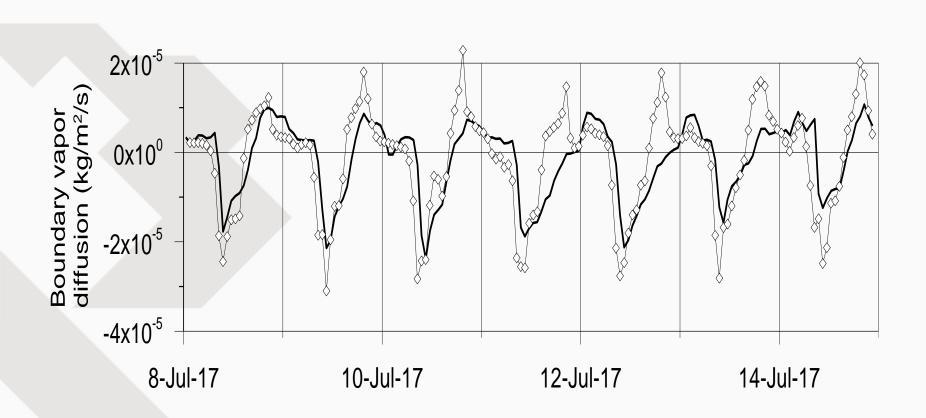
Precipitation is measured and the vapor diffusion is calculated by an aerodynamic diffusion relation


$$E = k^2 v_{z_a} \left(\ln \frac{z_a}{z_0} \right)^{-2} \left(\left(\rho_g \omega_g^w \right)_{z_a} - \left(\rho_g \omega_g^w \right)_{z_0} \right)$$

- Flux of air: gas pressure is fixed at 0.1 MPa. From this air flow (j_g^a) is calculated
- Flux of energy: net radiation (R_n) + sensible heat flux (H), + latent heat flux (or advective heat flux due to vapor flux)



Retention curves used by the models together with suction and VWC (volumetric water content = ϕS_l), measured outside the lysimeter at a depth of 1.40 m. The three retention curves are plotted on an arithmetic (left) and logarithmic scale (right).


Mass of water in the lysimeter

Temperature profiles

Evolution of vapor diffusion at the boundary

igracias!

ACKNOWLEDGMENTS AND REFERENCES

Funding:

- European Research Funds (SE Scientific Infrastructures and Techniques and Equipment 2013, IGME13-1E-2113).
- Spanish National Plan for Scientific and Technical Research and Innovation: CLIGRO Project (MICINN, CGL2016-77473-C3-1-R).
- National System of Youth Guarantee (MINECO activity with reference PEJ-2014-85121) co-financed under the Youth Employment Operational Program, with financial resources from the Youth Employment Initiative (YEI) and the European Social Fund (ESF).

Technical support

- Biological Station of Doñana, the Biological Reserve of Doñana and the administration of the Doñana National Park.
- Iñaki Vadillo from University of Malaga for isotope analysis.
- UMS AG, Munich (Germany)
- A. Peters for providing AWAT filter.

Most Relevant Bibliography:

- Peters A, Nehls T, Schonsky H, Wessolek G (2014) Separating precipitation and evapotranspiration from noise A
 new filter routine for high-resolution lysimeter data. Hydrology and Earth System Sciences, 18(3): 1189–1198
- Schrader F, Durner W, Fank J, Gebler S, Pütz T, Hannes M, Wollschläger U (2013) Estimating Precipitation and Actual Evapotranspiration from Precision Lysimeter Measurements. Procedia Environmental Sciences, 19, 543–552