

Lidia Molano Leno¹, Claus Kohfahl¹, Daniel Jesús Martínez Suárez¹, Fernando Ruiz Bermudo¹, Antonio Nicolás Martínez Sánchez de la Nieta¹, Carlos Mediavilla¹, Stefan Engerlhardt², Karl Vanderlinden³, Juan Vicente Giráldez⁴,

¹Instituto Geológico y Minero de España , Seville (Spain)
²UMS AG, Munich (Germany)
³IFAPA, Centro Las Torres-Tomejil, Seville (Spain)
⁴Departamento de Agronomía, Universidad de Córdoba, Córdoba (Spain)

nstituto Geolóaico

v Minero de España

OBIERNO

E ESPANA

CLGRO

MINISTERIO

DE ECONOMÍA

COMPETITIVIDAD

XIII de Jornadas de Investigación de la Zona No Saturada 8th – 10th November 2017

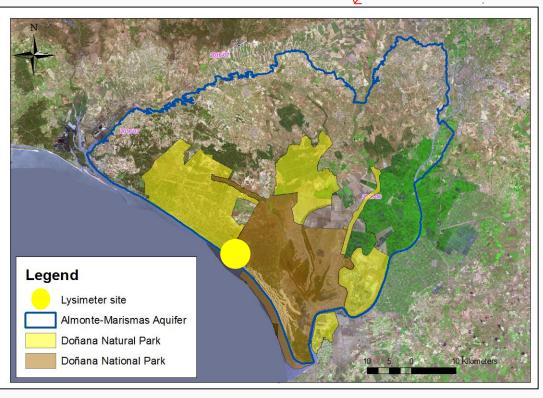
Zaragoza, Spain

Claus Kohfahl Instituto Geológico y Minero de España Unidad de Sevilla

STUDY SITE

Southwest Spain: Doñana National Park => Almonte-Marismas aquifer

Geography

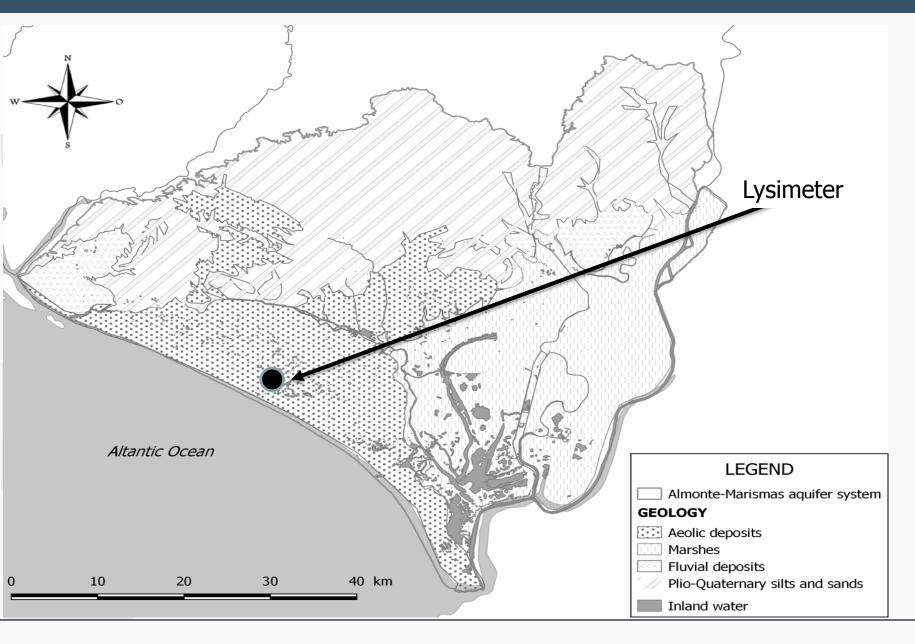

- surrounded by 46 villages and towns =>1.5 Mio people
- Agriculture and Tourism

Geology

- ≻ <u>dunes</u>
- beaches
- ➢ marshes

Climate

- Sub-humid Mediterranean with Atlantic influence
- Average rainfall: 500-600 mm
- > Average Temperature: 17-18°C



Ortophoto from Junta de Andalucia webpage: http://www.ign.es/wms-inspire/pnoa-ma

4 6.7

Hydrogeology

Geology and landscape

Dunes and locals swamps

INTRODUCTION

Geology and landscape

Marshes

INTRODUCTION

MOTIVATION

Threat of groundwater resources:

- ✓ Agriculture
- ✓ Tourism
- ✓ Climate Change

Dune belts

Fundamental for groundwater recharge

Key location for the quantitative and qualitative monitoring of water resources in ecological habitats.

Climate Change may impact groundwater recharge due to:

- ➢ increasing temperatures
- changing seasonal patterns of precipitation
 - change in vegetation

1. To explore the impact of different meteorological conditions on groundwater recharge in <u>dunes belts</u> within <u>semiarid climate</u>.

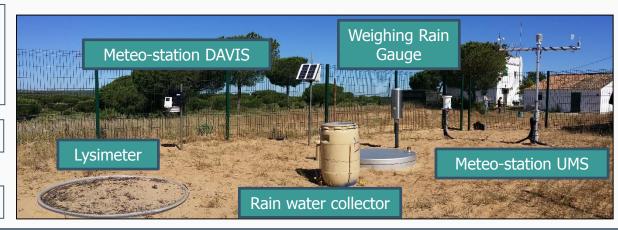
2. To derive its dependence on regional climate trends predicted by global climate models

Meteo Lysimeter Site Equipment

Weighting Lysimeter (UMS AG, Munich, Germany)

- 1 m² area
- 1.5 m height
- 10 g weighting resolution

Six CS650 soil moisture sensors (Campbell Scientific, Logan UT)

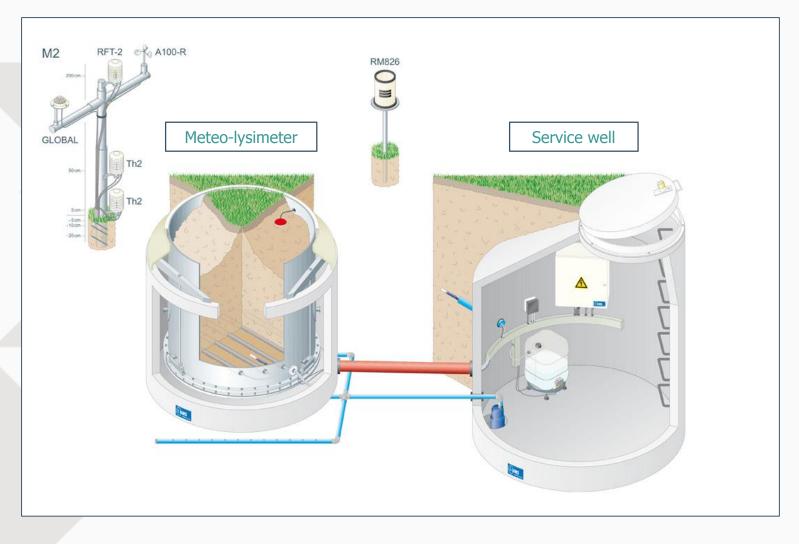

	Depths (m)		
	1.60	0.30	
	2.20	0.60	
	3	1.20	
-			

Measured parameter	Time interval (minutes)
Soil mass lysimeter	1
Water mass drained from lysimeter	1
Soil water tension	10
Soil moisture	10
Wind direction	10
Wind velocity	10
Net radiation	10
Precipitation	10
Air humidity	10
Air and soil thermal profile	10
Soil bulk density	Once
Grain size distribution	Once
Mineralogy	Once
Metals content	Once

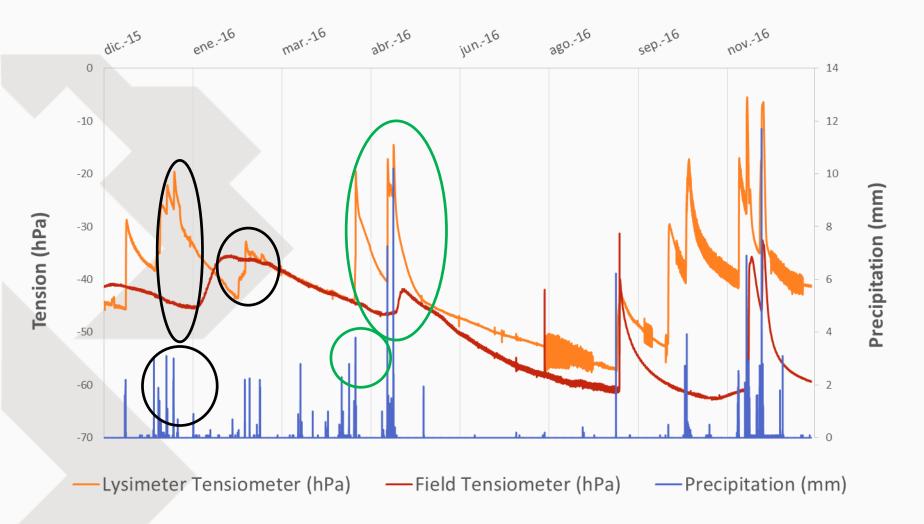
2 Automatic and Meteorological Stations (Vantage PRO2 Davis, UMS AG, Munich, Germany)

Weighing Rain Gauge (OTT pluvio1)

Rain water collector


High Precision Weighing METEO LYSIMETER

- Most precise measures for recharge, precipitation and evapotranspiration.
- Mostly installed for agricultural purpose in crop areas.
- Limited knowledge exists about recharge dynamics and its dependence on meteorological parameters in dune belts.



METEO LYSIMETER

Tensiometer. Lower Boundary Control

Data Noise Filtration: AWAT (Peters et al. 2014)

 $\mathbf{P} = \mathbf{R} + \mathbf{E}\mathbf{T} + \Delta \mathbf{S}$

$$\Delta W = \Delta w_{lys} + \Delta w_{drain}$$

Parameter measured by lysimeter:

P: Precipitation

ET: Evapotranspiration

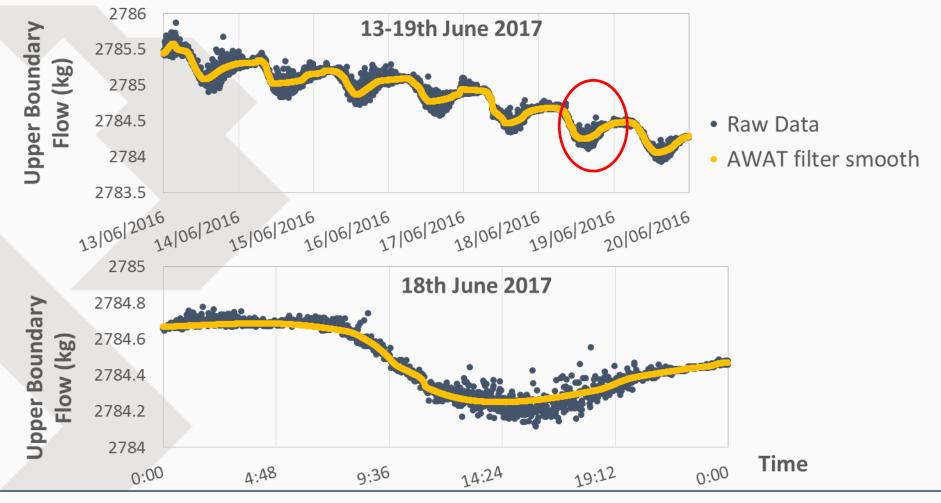
R: Recharge

 ΔS : Change in storage

 $\boldsymbol{P} = \begin{cases} \Delta \boldsymbol{W}, & \Delta \boldsymbol{W} > \boldsymbol{0} \\ \boldsymbol{0}, & \Delta \boldsymbol{W} \le \boldsymbol{0} \end{cases}$

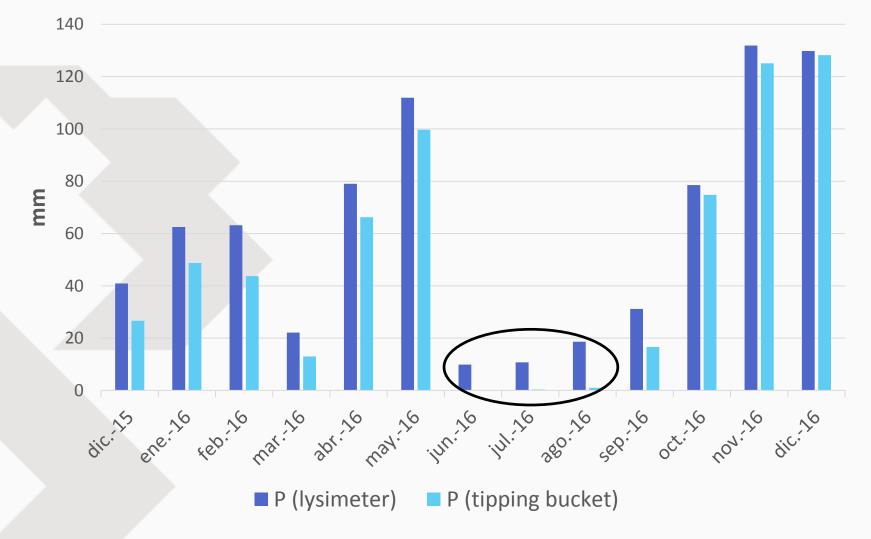
$$ET = \begin{cases} \Delta W, & \Delta W < \mathbf{0} \\ \mathbf{0}, & \Delta W \ge \mathbf{0} \end{cases}$$

Intrinsic noise reduced by smoothing

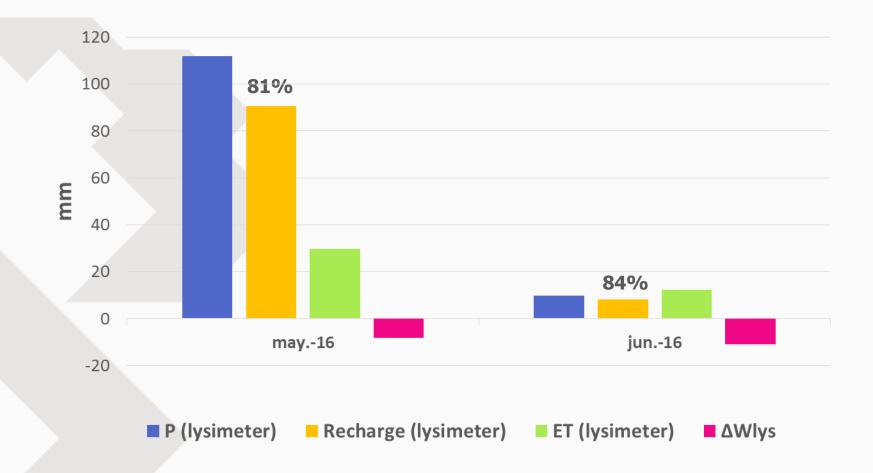

Adaptive Window Adaptive Threshold

AWAT

Data Noise Filtration: AWAT (Peters et al. 2014)


Examples of smoothing:

FIRST RESULTS AND DISCUSSION


Monthly Measured Rainfall

FIRST RESULTS AND DISCUSSION

Example Monthly Soil Water Balance Components

- Compare different rainfall measurements methods (Hellmann, tipping bucket, lysimeter)
- Sensitivity study of noise filtering parameters and algorithms
- Dependence of soilwater components on meteorological parameters
- Model based interpretation of measured data by HYDRUS1D (e.g. influence of low boundary control, prognostic simulations for climate change scenarios, upscaling to other sites).
- The role of dew for soil water balance and recharge
- The applicability of ET equations for the study site

IGRACIAS!

Funding:

- European Research Funds (SE Scientific Infrastructures and Techniques and Equipment 2013, IGME13-1E-2113).
- Spanish National Plan for Scientific and Technical Research and Innovation: CLIGRO Project (MICINN, CGL2016-77473-C3-1-R).
- National System of Youth Guarantee (MINECO activity with reference PEJ-2014-85121) co-financed under the Youth Employment Operational Program, with financial resources from the Youth Employment Initiative (YEI) and the European Social Fund (ESF).

Technical support:

- Biological Station of Doñana, the Biological Reserve of Doñana and the administration of the Doñana National Park.
- Iñaki Vadillo from University of Malaga for isotope analysis.
- UMS AG, Munich (Germany) for technical support
- A. Peters for providing AWAT filter.
- Miguel Rodríguez Rodríguez from University of Pablo Olavide for taking groundwater samples.

References:

- Peters A, Nehls T, Schonsky H, Wessolek G (2014) Separating precipitation and evapotranspiration from noise A new filter routine for high-resolution lysimeter data. Hydrology and Earth System Sciences, 18(3): 1189–1198
- Schrader F, Durner W, Fank J, Gebler S, Pütz T, Hannes M, Wollschläger U (2013) Estimating Precipitation and Actual Evapotranspiration from Precision Lysimeter Measurements. Procedia Environmental Sciences, 19, 543–552